Improved measurement of low-density-lipoprotein susceptibility to copper-induced oxidation: application of a short procedure for isolating low-density lipoprotein.

نویسندگان

  • H A Kleinveld
  • H L Hak-Lemmers
  • A F Stalenhoef
  • P N Demacker
چکیده

Low-density-lipoprotein (LDL) oxidation may provide the crucial link between plasma LDL and atherosclerotic-lesion formation. Oxidation can be induced in vitro by incubating LDL with cells or metal ions and can be measured by continuously monitoring conjugated-diene absorbance at 234 nm. Measurement of LDL oxidizability was improved by performing the assay with 0.05 g of LDL-protein per liter of phosphate buffer containing 1 mumol of EDTA, by initiating oxidation by adding CuCl2 (5 mumol/L) at 30 degrees C, and by using a short-run ultracentrifugation method for isolating LDL, which reduced the time needed for obtaining purified LDL and thus reduced in vitro oxidation. LDL apolipoprotein analysis and oxidizability determination showed that this method is better than the longer sequential-isolation procedure. Adding butylated hydroxytoluene (BHT) to plasma as an antioxidant unpredictably increased the LDL oxidation lag time, making BHT unsuitable as an antioxidant. Adding EDTA appeared to be sufficient to prevent in vitro oxidation. Additionally, the diene production correlated highly with the concentration of thiobarbituric acid-reactive substances (r = 0.97). No relation between the vitamin E content of LDL and the oxidation lag time was found.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECTS OF UBIQUINOL-1 0 AND f3-CAROTENE ON THE IN VITRO SUSCEPTIBILITY OF LOW-DENSITY LIPOPROTEIN TO COPPER-INDUCED OXIDATION

 ABSTRACT Background: Dietary antioxidant intake has been reported to be inversely associated with coronary miery disease. To clarify the possible role oflipophilic antioxidants in the prevention of atherosclerosis, we investigated the effects ofubiquinol-1 0 and ~-carotene on the susceptibility oflow-density lipoprotein(LD L) to oxidative modification. Methods: In this study, first "u...

متن کامل

The Effect of ? -Tocopherol on Copper Binding to Low Density Lipoprotein

The oxidative modification of low density lipoprotein (LDL) may play an important role in atherogenesis. Antioxidants that can prevent LDL oxidation may act as antiatherogens. Our understanding of the mechanism of LDL oxidation and factors that determine its susceptibility to oxidation is still incomplete. Copper is a candidate for oxidizing LDL in atherosclerotic lesions. The binding of copper...

متن کامل

Effect of Lycopene on Formation of Low Density Lipoprotein-Copper Complex in Copper Catalyzed Peroxidation of Low Density Lipoprotein, as in vitro Experiment

Background: A great deal of evidence has indicated that oxidatively modified LDL plays a critical role in the initiation and progression of atherosclerosis. Antioxidants that can prevent LDL oxidation may act as antiatherogens. Copper is a candidate for oxidizing LDL in atherosclerotic lesions. The binding of copper ions to LDL is usually thought to be a prerequisite for LDL oxidation by copper...

متن کامل

The Effect of ? -Tocopherol on Copper Binding to Low Density Lipoprotein

The oxidative modification of low density lipoprotein (LDL) may play an important role in atherogenesis. Antioxidants that can prevent LDL oxidation may act as antiatherogens. Our understanding of the mechanism of LDL oxidation and factors that determine its susceptibility to oxidation is still incomplete. Copper is a candidate for oxidizing LDL in atherosclerotic lesions. The binding of copper...

متن کامل

Glucose Influence on Copper Ion-Dependent Oxidation of Low Density Lipoprotein

Background: It is well established that oxidative modification of low density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. We examined the in vitro effect of glucose on native and glycated LDL oxidation using copper ion dependent oxidation system. Methods: In this study, LDL was isolated from plasma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical chemistry

دوره 38 10  شماره 

صفحات  -

تاریخ انتشار 1992